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Abstract 

Recently, due to the great advent of sensor 
technology, residents can collect the usage data 
of appliances in a house easily. However, with 
data progressively generating, it is still a chal-
lenge to visualize how these appliances are used. 
Thus, a mining and maintaining system is 
needed to incrementally discover appliance us-
age patterns. Most previous studies on usage 
pattern discovery are mainly focused on analyz-
ing the patterns of single appliance and do not 
consider the incremental maintenance of mining 
results. In this paper, a novel system, namely, 
Dynamic Correlation Mining System (DCMS) is 
developed to capture and maintain the correla-
tion patterns among appliances incrementally. 
The experimental results indicate that proposed 
system is efficient in execution time and pos-
sesses scalability. Furthermore, we apply DCMS 
on a real-world dataset to show the practicability. 

Keywords: sensor data analysis; smart home; 
correlation pattern; intelligent system; incre-
mental mining 

1. Introduction 

Concerns over global climate changes have 
motivated significant efforts in reducing the 
electricity usage in residence which is a signifi-
cant contributor of greenhouse gas emissions. 
However, electricity conservation is difficult for 
the residents since the lack of detailed electricity 
usage. With the advance of sensor technology, an 
increasing number of smart power meters, which 
facilitates data collection of appliance usage, 
have been deployed. 

With the appliance usage data, residents 
could supposedly visualize how the appliances 
are used. Nonetheless, with a huge amount of 
usage data progressively generated, subtle in-
formation may exist but hidden. Therefore, it is  

 
 
 
necessary to design a system not only to capture 
appliance  usage  patterns  but  also   maintain   the  
mining results. These patterns can help users to 
better understand how they use the appliances at 
home. 

Most prior studies focus on knowledge ex-
traction for a single appliance instead of the cor-
relation among appliances in a house. In our 
daily life, we usually use different appliances 
simultaneously. For example, air conditioner and 
television in the living room may be turned on in 
the evening, as shown in Fig. 1. The correlation 
among the usage of some appliances can provide 
valuable information to assist residents better 
understand how they use appliances. 
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Fig. 1: An example of daily appliance usage sequence. 

 
In real applications, the usage data usually 

are generated progressively, i.e., new data have 
been inserted and appended in database. Obvi-
ously, incremental mining of correlation patterns 
is complex and arduous, and requires a different 
approach from patterns extracted from single 
appliance. To the best of our knowledge, little 
attention has been paid to this issue, partly be-
cause of the complex relationship among usage 
intervals. When appending an interval, the com-
plex relations may lead to the generation of a 
greater number of possible candidates. 

Allen’s 13 temporal relations [1] are usually 
adopted to describe the complex relations among 
usage intervals, as shown in Table 1. However, 
Allen’s temporal logics are binary relations and 
may be problematic when describing relation-
ships among more than three intervals. An ap-



 

propriate representation is crucial for this cir-
cumstance. Various representations [5, 15, 18] 
have been proposed; however, most of them 
have a restriction on either ambiguity or scal-
ability and do not consider the processing of 
incremental maintenance. 

 
Table 1: Allen’s 13 relations between two intervals. 
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In this paper, we develop an intelligent sys-
tem, Dynamic Correlation Mining System 
(DCMS), to incrementally mine correlation pat-
terns in smart home. The contributions of our 
proposed system are as follows: 
 First, we develop a new representation, dy-

namic representation, to express a pattern 
nonambiguously. We use the arrangement of 
endpoints of all intervals to simplify the proc-
essing of complex relation among intervals, 
and consider the time information to facilitate 
incremental mining. 

 Second, based on the dynamic representation, 
an algorithm, Incremental Correlation Pattern 
Miner (ICPMiner), is proposed to incremen-
tally discover correlation patterns in usage da-
tabase. Experimental studies indicated that, in 
incremental environment, ICPMiner is effi-
cient and outperforms other state-of-the-art 
algorithms. 

 Third, we employ some pruning strategies to 
reduce the search space and avoid 
non-promising database process. The experi-
mental results reveal that pruning strategies 
can improvement the runtime performance of 
ICPMiner efficiently. 

 Finally, we applied DCMS on real datasets to 
demonstrate the practicability of incremental 
maintenance of the correlation patterns. 

The rest of the paper is organized as follows. 
Section 2 provides the related works. Section 3 
introduces the system architecture and prelimi-
nary. Section 4 describes the ICPMiner algo-
rithm. Section 5 gives the experiments and per-
formance study, and we conclude in Section 6. 

2. Related Work 

In this section, we discuss some previous 
works extracted useful knowledge and patterns 
of a single device applying on energy disaggre-

gation [3, 7, 11, 14, 17] or appliance recognition 
[2, 4, 6, 8, 9, 10, 13]. 

Suzuki et al. [17] use a new NIALM tech-
nique based on integer programming to disag-
gregate residential power use. Matthews et al. 
[14] use a dynamic Bayesian network and filter 
to disaggregate the data online. Kim et al. [11] 
investigate the effectiveness of several unsuper-
vised disaggregation methods on low frequency 
power measurements collected in real homes. 
They also propose a usage pattern which consists 
of on-duration distribution of all appliances. 
Goncalves et al. [7] explore an unsupervised 
approach to determine the number of appliances 
in the household, including their power con-
sumption and state, at any given moment. Chen 
et al. [3] disaggregate utility consumption from 
smart meters into specific usage associated with 
certain human activities. They propose a novel 
statistical framework for disaggregation on 
coarse granular smart meter readings by model-
ing fixture characteristic, household behavior, 
and activity correlations.  

Ito et al. [8] extract features from the cur-
rent (e.g., amplitude, form, timing) to develop 
appliance signatures. For appliance recognition, 
Kato et al. [10] use Principal Component Analy-
sis to extract features from electric signals and 
classify them using Support Vector Machine. 
Aritoni et al. [2] develop a software prototype to 
understand the behaviors of household appli-
ances. Chen et al. [4, 6] introduce two types of 
usage patterns to describe users’ representative 
behaviors. Lin et al. [13] apply power meters for 
appliance recognition on the electric panel. Jak-
kula et al. [9] propose an Apriori-based algo-
rithm for activity prediction and anomaly detec-
tion from sensor data in a smart home. All 
aforementioned studies focus on knowledge ex-
traction for a single appliance and ignore the 
concept of incremental maintenance of mining 
results in a smart home. 
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Fig. 2: System framework of DCMS 

3. System Architecture & Preliminary 

We develop an intelligent system, called 
Dynamic Correlation Mining System (abbrevi-



 

ated as DCMS), not only to capture the correla-
tion patterns among appliances but also to main-
tain the discovered pattern when usage data are 
progressively generated in the smart home. The 
framework of DCMS is shown in Fig. 2. 

We first attach a smart meter to each appli-
ance in smart home environment. The smart me-
ter will transmit the usage data of the appliance 
to a cloud server. Since the data are generated 
progressively, an efficient algorithm, named In-
cremental Correlation Pattern Miner (ICPMiner), 
is proposed to incrementally mine and maintain 
the correlation patterns among appliances. Fi-
nally, we develop an APP to visualize the dis-
covered correlation patterns for residents. Before 
introducing the ICPMiner, we give some defini-
tion first. 
 
Definition 1 (usage sequence and database) 
Let E = {e1, e2,…, ek} be the set of appliances. 
We say the triplet (ei, si, fi)  E  N  N is a us-
age interval, where ei  E, si, fi  N and si  fi. 
The si and fi are called the starting time and the 
finishing time, respectively. An usage sequence q 
is a series of usage intervals (e1, s1, f1), …, (en, 
sn, fn). The time information of q is the starting 
time of first interval and the finishing time of 
last interval in q, i.e., s1 and fn. A database DB = 
{r1, r2, …, rm} is called a usage database where 
each record ri is a pair of sequence-id (SID) and 
usage sequence, i.e., ri = SIDi, qi. 
 
Definition 2 (dynamic representation) Given a 
usage sequence q = (e1, s1, f1), …, (ei, si, fi), …, 
(en, sn, fn), Tq = { s1, f1, …, si, fi, …, sn, fn } is a 
set of all endpoints in q. After sorting T in 
non-decreasing order, an endpoint sequence qe = 
t1, t2, …, t2n can be derived by representing si 
and fi as ei

＋ and ei
－, respectively. We use the 

parenthesis to form an endpointset to indicate the 
times of endpoints are the same. The corre-
sponding endpoint sequences of 13 Allen’s tem-
poral relations are shown in Table 1. The dy-
namic representation of q includes the corre-
sponding endpoint sequence qe and time infor-
mation [s1, fn] of q. For example, given a usage 
sequence (A, 1, 3), (B, 5, 9), its time set is {1, 3, 
5, 9}; hence, the corresponding endpoint se-
quence is A＋A－B＋B－. The dynamic representa-
tion of q is A＋A－B＋B－ [1, 9]. Without loss of 
generality, for the rest of this paper, we suppose 
all the sequences in a usage database have been 
transformed into dynamic representation.   
 
Definition 3 (correlation pattern and frequent 
pattern tree) Given a usage database DB, a re-
cord SID, qe, [s, f ] is said to contain an end-
point sequence , if  is a subsequence of qe 

(represented as  ⊑ qe). The support of  in DB 

is the number of records containing , i.e., sup-

port () = |{ SID, qe, [s, f  ] DB) |  ⊑ qe}|. 
Given a positive integer min_sup as the support 
threshold, the set of correlation patterns includes 
all frequent endpoint sequences whose supports 
are no less than min_sup. A frequent pattern tree 
(FPT) T is a tree that represents the set of corre-
lation patterns in database. A node d in T stores 
an endpoint corresponding to a correlation pat-
tern that starts from the root node to d. Each 
node also preserves two information, say sup-
port_value and sequence_list. The sup-
port_value represents the support count of the 
correlation pattern. The sequence_list stores a 
list of SIDs to represent the sequences containing 
this correlation pattern. 
 

Actually, two types of incremental updates 
for usage database are used: 1) inserting new 
usage sequences into database, denoted as IN-
SERT; 2) appending new usage intervals to ex-
isting usage sequences, denoted as APPEND. An 
application may include all types of updates. 
When the database is updated with a combina-
tion of INSERT and APPEND, we can regard the 
INSERT as a special case of APPEND, for in-
serting a new sequence is equivalent to append-
ing a new sequence to an empty sequence, as 
shown in Fig. 3. 
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Fig. 3: Concept of incremental update in usage database. 

 
With three usage sequences q, q’ and q’’, q’’ 

= q ◇ q’ means q’ is the concatenation of q. q’ is 
called the appended sequence of q. q’’ is an 
updated sequence of q appended with q’. To 
facilitate the presentation of this paper, we de-
fine increment and update databases. Given a 
temporal database, DB, truncated and appended 
with a few event sequences after a period, DB is 
called original database. 
 
Definition 4 (increment and updated database) 
The increment database db is referred to as the 
set of newly appended sequences. The SIDs of 
the appended sequences in db may already exist 
in DB. A database DB combining all the event 



 

sequences in db is referred to as the updated da-
tabase DB’, as shown in Fig. 3. 

4. ICPMiner Algorithm 

When a usage database DB is updated to 
DB’, there are three possible cases for the corre-
lation patterns in DB’:  
 Case1: A pattern is frequent in DB’, and also 

frequent in DB. 
 Case2: A pattern is frequent in DB’, and in-

frequent in DB but has a frequent pattern in 
DB as a prefix. 

 Case3: A pattern is frequent in DB’, and in-
frequent in DB and has no any frequent pat-
terns in DB as a prefix. 

Case1 is easy to handle since we have al-
ready stored the information of previous mining 
results into FPTDB. We can obtain the correlation 
patterns in Case1 by checking and adjusting the 
support of every pattern in FPTDB in DB’. In 
Case2, although we have not preserved any in-
formation of infrequent sequences in DB, all 
correlation patterns have at least one prefix sub-
sequence which is frequent in DB, i.e., the fre-
quent prefix is stored in FPTDB. Hence, we can 
utilize the correlation patterns in FPTDB as prefix 
to recursively discover the correlation patterns in 
Case 2. Since, in Case 3, the correlation patterns 
have no information stored in previous mining 
results, FPTDB, we need to scan DB’ for all new 
frequent endpoints, and then use each new fre-
quent endpoint as prefix to construct projected 
database and recursively mine all correlation 
patterns in Case 3. 

In order to calculate the support of all pat-
terns which are infrequent in DB but frequent in 
DB’, the naïve method may keep the information 
of all possible candidate set, i.e., mining EDB 
with min_sup = 1. This awkward approach may 
consume large memory and many non-promising 
database projection. To remedy this problem, we 
propose an algorithm, ICPMiner, with two opti-
mization techniques to reduce unnecessary space 
searches. 
 
Definition 5 (search reduction) Given a tem-
poral pattern  in DB (node  in FPTDB), when 
DB is updated to DB’, incre_sid is defined as a 
set of all SIDs in increment database db and in-
cre_endpoint| is defined as a set of all event 
slices in db|. We have two search space reduc-
tions, 
i) sequence-reduction: If {’ s sequence list}

∩incre_sid = , then DB| is identical to 
DB’|. The support of  and all temporal 
patterns prefixed with , i.e., node  and all 
child nodes of  in FPTDB, are unchanged in 
DB’. Hence there is no temporal pattern 

which is infrequent in DB but becomes fre-
quent in DB’ with  as prefix. We can stop 
searching  and all ’s child nodes in 
FPTDB. 

ii) endpoint-reduction: If ’ s parent node in in 
FPTDB does not insert any node as child 
node when DB is updated to DB’, and the 
set of { and all ’ s sibling nodes}∩incre_ 
endpoint| = , then the support of  and all 
temporal patterns prefixed with , i.e., node 
 and all child nodes of  in FPTDB, are 
unchanged in DB’. Hence there is no tem-
poral pattern which is infrequent in DB but 
becomes frequent in DB’ with  as prefix. 
We can stop searching  and all child nodes 
of  in FPTDB 

 
The search space reduction in Definition 5 

plays an important role in ICPMiner. When the 
minimum support goes lower and the maintained 
patterns turn to be longer, many unnecessary 
searches can be avoided effectively. As observed 
in our experiments, the search space reduction 
can skip more than 60% nodes in FPTDB, espe-
cially when minimum support is extremely low. 
This is also the main reason why ICPMiner not 
only outperforms other algorithms in runtime 
performance, but also consumes less memory 
space. The pseudo code is shown in Algorithm 1. 
 

Algorithm 1: ICPMiner ( DB’, min_sup, FPTDB ) 

Input: DB’: updated temporal database, min_sup: the 
minimum support, FPTDB: frequent pattern tree 
of original DB 

Output: FPTDB’ : frequent pattern tree of updated data-
base DB’ 

 
// initial Phase 
01: FPTDB’ ← ; determine EDB; 
02: transform DB’ into dynamic presentation and find all 

frequent endpoints concurrently; 
03: NFS ← new frequent endpoints in DB’ ; // frequent 

endpoints in DB’  FPTDB 
 
// mining phase  
04: for each endpoint b in NFS do 
05:   insert b into FPTDB’ ; 
06:   call CPrefixSpan (DB’|b , b , min_sup, FPTDB’ ); 
 
// extending phase  
07: scan DB’ for update the support of node in FPTDB ; 
08: for each node   in FPTDB do 
09:   FPTDB ← CPrefixSpan ( DB’, , min_sup, 

FPTDB); 
10:   for each node  in FPTDB  min_supdo 
11:     insert  into FPTDB’ ; 
12:   if search_reduction (, DB’| ) = “false” 
13:     call CPrefixSpan (DB’| ,  , min_sup, FPTDB’ ); 
14: Output FPTDB’ ; 

 
There are three phases in ICPMiner, initial 

phase, mining phase and extending phase. Initial 
phase first uses the interval extension to trans-
form all sequences into dynamic representation 



 

(line 2, algorithm 1), and scans db once to dis-
cover all new frequent endpoints in DB’. Notice 
that, if we store previous infrequent endpoints in 
DB, we can find the complete set of new fre-
quent endpoints in DB’ by just scan EDB with-
out rescanning DB again (line 3, algorithm 1). 
Then, in mining phase, we use each new fre-
quent slice as prefix to construct projected data-
base and call CPrefixSpan to discover the tem-
poral patterns (lines 4-6, algorithm 1). 

CPrefixSpan extends the concept of pro-
jected database from [16] and employs two op-
timization strategies to reduce the search space. 
Since the starting endpoints and finishing end-
points definitely occur in pairs in a sequence, we 
only project the frequent finishing endpoints 
which have the corresponding starting endpoints 
in their prefixes (lines 3-5, procedure 1). We can 
prune off non-qualified patterns before con-
structing projected database. 
 

Procedure 1: CPrefixSpan (DB| ,  , min_sup, FPTDB ) 

Input: DB|: projected database, : a temporal pattern, 
min_sup: the minimum support, FPTDB: frequent 
pattern tree of original DB 

 
01: scan DB| once and find all frequent endpoints c; 
02: for each frequent endpoint c do 
03:   if c is a “finishing endpoint” then 
04:     if exist corresponding starting endpoint in  

then 
05:       append c to  to form  ; 
06:   if c is a “starting endpoint” then 
07:     append c to  to form  ; 
08: for each  do 
09:   construct projected database DB| with significant 

postfix; 
10:   if |DB| |  min_sup then 
11:     insert  into FPTDB ; 
12:   if search_reduction (, DB’| ) = “false” 
13:    call CPrefixSpan (DB| , , min_sup, FPTDB ); 

 
Moreover, when constructing a projected 

database, some endpoints in postfixes need not 
be considered. With respect to a prefix p, a 
finishing endpoint in a projected postfix is called 
significant, if it has corresponding starting end-
point in p. We construct the projected database 
DB|p by collecting significant endpoints only 
(line 9, procedure 1). All insignificant endpoints 
are eliminated since they can be ignored in the 
discovery of temporal patterns. Note that the 
search_reduction technique in Definition 5 can 
be used in CPrefixSpan when we call it recur-
sively. We utilize search_ reduction to check 
whether growing can stop (line 12, procedure 1). 
If not, we recursively call CPrefixSpan to dis-
cover the temporal patterns.  

Finally, in extending phase, ICPMiner up-
dates the support of every frequent pattern in DB. 
If a pattern is still frequent in DB’, we also use 
search_reduction to check if we can stop grow-
ing. If not, CPrefixSpan is called to discover the 

temporal patterns (lines 12-13, algorithm 1). 

5. Experimental Results 

To evaluate the performance of ICPMiner, 
we implement CTMiner [5], TPrefixSpan [18], 
IEMiner [15] for comparison. All algorithms 
were implemented in C++ language and tested 
on a computer with Pentium D 3.0 GHz with 2 
GB of main memory. The performance study has 
been conducted on both synthetic and real world 
datasets. First, we compare the execution time 
and memory usage using synthetic datasets at 
extreme low minimum support. Then, we use a 
real dataset [12] to show the performance and 
the practicability of incremental mining for cor-
relation patterns. 

The synthetic datasets are generated using 
synthetic generation program [18]. Since the 
original data generation program was designed 
to generate static database, the generator requires 
modifications on incremental scenario accord-
ingly. The parameter setting of temporal data 
generator is shown in Table 2. We partition the 
updated database DB’ into the original database 
DB and increment database db, as the example in 
Fig. 1. Different settings of three parameters are 
used to reflect different updating scenarios. 
 

Table 2: Parameters of synthetic data generator. 

Ratio of the number of intervals of an existed sequence 
appearing in original database DB to increment database db

Rapp

Ratio of the number of existed sequences extended to new 
sequences inserted in increment database db

Rext

Ratio of the number of sequences in increment database db
to updated database DB’

Rinc

Number of event symbolsN

Number of potentially frequent sequencesNS

Average size of potentially frequent sequences| S |

Average size of event sequences| C |

Number of event sequences| D |

descriptionparameters

Ratio of the number of intervals of an existed sequence 
appearing in original database DB to increment database db

Rapp

Ratio of the number of existed sequences extended to new 
sequences inserted in increment database db

Rext

Ratio of the number of sequences in increment database db
to updated database DB’

Rinc

Number of event symbolsN

Number of potentially frequent sequencesNS

Average size of potentially frequent sequences| S |

Average size of event sequences| C |

Number of event sequences| D |

descriptionparameters

 

5.1 Execution time and memory usage 

In all the following experiments, two pa-
rameters are fixed, i.e., the average size of po-
tentially frequent sequences, | S | = 4, and the 
number of potentially frequent sequences, NS = 
5,000. We set Rinc = 10%, Rext = 50% and Rapp = 
20% to model common database updating sce-
nario. 

The first experiment for comparison of four 
algorithms is on the dataset D10k–C10–N1k 
with the minimum support thresholds varying 
from 0.01 % to 0.005 %. Obviously, re-mining 
from scratch with non-incremental algorithm is 
less efficient than using incremental maintaining 
algorithm, as illustrated in Fig. 4(a). When we 
continue to lower the minimum threshold, the 
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Fig. 4: Performance and memory usage on synthetic datasets. 

 
runtime of ICPMiner outperforms the other al-
gorithms. The memory usages of algorithms are 
showed as in Fig. 4(b). We can see that ICP-
Miner consumes less memory than the other 
algorithms. The second experiment is performed 
on data set D100k–C20–N10k, which contains 
100,000 usage sequences, average length 40 and 
10,000 usage intervals with common database 
updating scenario. The execution time of differ-
ent algorithms is shown in Fig. 4(c). We can see 
that when the support is 0.005%, ICPMiner is 
significantly faster than other methods. Fig. 4(d) 
shows the memory usages of four algorithms 
with different minimum support thresholds. Ob-
viously, ICPMiner consumes less memory than 
the other algorithms. 
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Fig. 5: Part of correlation patterns from REDD dataset 

5.2 Real World Dataset Analysis 

In addition to using synthetic datasets, we 
also have performed an experiment on 
real-world dataset to indicate the applicability of 
correlation pattern mining. The dataset REDD 
[12] used in the experiment is the power reading 
of appliances collected from six different houses. 
Each house has about 15 appliances. We convert 
the raw data into the usage interval with turn-on 
time and turn-off time. Fig. 5 shows the part of 
mining result applying ICPMiner on REDD 
dataset with min_sup = 0.3. 

6. Conclusion 

Recently, considerable concern has arisen 
over the electricity conservation due to the issue 
of greenhouse gas emissions. In this paper, we 
propose an intelligent system, DCMS, which not 
only could capture the usage correlation among 
appliances in a house, but also dynamically 
maintain the mining results with progressive 
data generation. The experimental studies indi-
cate that DCMS is efficient and scalable. Fur-
thermore, DCMS is applied on a real-world data-
set to show the practicability of correlation pat-
tern mining. 
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