

An Intelligent System for Mining and Maintaining Correla-
tion Patterns among Appliances in Smart Home

Yi-Cheng Chen1 and Julia Tzu-Ya Weng2,3
1Department of Computer Science and Information Engineering, Tamkang University,

Taiwan
2Department of Computer Science and Engineering, Yuan Ze University, Taiwan
3Innovation Center for Big Data and Digital Convergence, Yuan Ze University,

Taiwan

ycchen@mail.tku.edu.tw julweng@saturn.yzu.edu.tw

Abstract

Recently, due to the great advent of sensor
technology, residents can collect the usage data
of appliances in a house easily. However, with
data progressively generating, it is still a chal-
lenge to visualize how these appliances are used.
Thus, a mining and maintaining system is
needed to incrementally discover appliance us-
age patterns. Most previous studies on usage
pattern discovery are mainly focused on analyz-
ing the patterns of single appliance and do not
consider the incremental maintenance of mining
results. In this paper, a novel system, namely,
Dynamic Correlation Mining System (DCMS) is
developed to capture and maintain the correla-
tion patterns among appliances incrementally.
The experimental results indicate that proposed
system is efficient in execution time and pos-
sesses scalability. Furthermore, we apply DCMS
on a real-world dataset to show the practicability.

Keywords: sensor data analysis; smart home;
correlation pattern; intelligent system; incre-
mental mining

1. Introduction

Concerns over global climate changes have
motivated significant efforts in reducing the
electricity usage in residence which is a signifi-
cant contributor of greenhouse gas emissions.
However, electricity conservation is difficult for
the residents since the lack of detailed electricity
usage. With the advance of sensor technology, an
increasing number of smart power meters, which
facilitates data collection of appliance usage,
have been deployed.

With the appliance usage data, residents
could supposedly visualize how the appliances
are used. Nonetheless, with a huge amount of
usage data progressively generated, subtle in-
formation may exist but hidden. Therefore, it is

necessary to design a system not only to capture
appliance usage patterns but also maintain the
mining results. These patterns can help users to
better understand how they use the appliances at
home.

Most prior studies focus on knowledge ex-
traction for a single appliance instead of the cor-
relation among appliances in a house. In our
daily life, we usually use different appliances
simultaneously. For example, air conditioner and
television in the living room may be turned on in
the evening, as shown in Fig. 1. The correlation
among the usage of some appliances can provide
valuable information to assist residents better
understand how they use appliances.

8/26, 2014: 00:00 24:0006:00 12:00 18:00

AC

TV

light

8/26, 2014: 00:00 24:0006:00 12:00 18:00

AC

TV

light

Fig. 1: An example of daily appliance usage sequence.

In real applications, the usage data usually

are generated progressively, i.e., new data have
been inserted and appended in database. Obvi-
ously, incremental mining of correlation patterns
is complex and arduous, and requires a different
approach from patterns extracted from single
appliance. To the best of our knowledge, little
attention has been paid to this issue, partly be-
cause of the complex relationship among usage
intervals. When appending an interval, the com-
plex relations may lead to the generation of a
greater number of possible candidates.

Allen’s 13 temporal relations [1] are usually
adopted to describe the complex relations among
usage intervals, as shown in Table 1. However,
Allen’s temporal logics are binary relations and
may be problematic when describing relation-
ships among more than three intervals. An ap-

propriate representation is crucial for this cir-
cumstance. Various representations [5, 15, 18]
have been proposed; however, most of them
have a restriction on either ambiguity or scal-
ability and do not consider the processing of
incremental maintenance.

Table 1: Allen’s 13 relations between two intervals.

(A+ B+) (A B)

A+ (A B+) B

A+ B+ (A B)

(A+ B+) A B

A+ B+ B A

A+ B+ A B

A equal B

A meets B

A finished-by B

A starts B

A contains B

A overlaps B

A before B

Temporal Relation

B equal A

B met-by A

B finishes A

B started-by A

B during A

B overlapped-by A

A+ A B+ BB after A

Endpoint sequencePictorial ExampleInversed Relation

(A+ B+) (A B)

A+ (A B+) B

A+ B+ (A B)

(A+ B+) A B

A+ B+ B A

A+ B+ A B

A equal B

A meets B

A finished-by B

A starts B

A contains B

A overlaps B

A before B

Temporal Relation

B equal A

B met-by A

B finishes A

B started-by A

B during A

B overlapped-by A

A+ A B+ BB after A

Endpoint sequencePictorial ExampleInversed Relation

A
B

A
B

A
B

A
B

A B

B
A

A B

A
B

A
B

A
B

A
B

A B

B
A

A B

In this paper, we develop an intelligent sys-
tem, Dynamic Correlation Mining System
(DCMS), to incrementally mine correlation pat-
terns in smart home. The contributions of our
proposed system are as follows:
 First, we develop a new representation, dy-

namic representation, to express a pattern
nonambiguously. We use the arrangement of
endpoints of all intervals to simplify the proc-
essing of complex relation among intervals,
and consider the time information to facilitate
incremental mining.

 Second, based on the dynamic representation,
an algorithm, Incremental Correlation Pattern
Miner (ICPMiner), is proposed to incremen-
tally discover correlation patterns in usage da-
tabase. Experimental studies indicated that, in
incremental environment, ICPMiner is effi-
cient and outperforms other state-of-the-art
algorithms.

 Third, we employ some pruning strategies to
reduce the search space and avoid
non-promising database process. The experi-
mental results reveal that pruning strategies
can improvement the runtime performance of
ICPMiner efficiently.

 Finally, we applied DCMS on real datasets to
demonstrate the practicability of incremental
maintenance of the correlation patterns.

The rest of the paper is organized as follows.
Section 2 provides the related works. Section 3
introduces the system architecture and prelimi-
nary. Section 4 describes the ICPMiner algo-
rithm. Section 5 gives the experiments and per-
formance study, and we conclude in Section 6.

2. Related Work

In this section, we discuss some previous
works extracted useful knowledge and patterns
of a single device applying on energy disaggre-

gation [3, 7, 11, 14, 17] or appliance recognition
[2, 4, 6, 8, 9, 10, 13].

Suzuki et al. [17] use a new NIALM tech-
nique based on integer programming to disag-
gregate residential power use. Matthews et al.
[14] use a dynamic Bayesian network and filter
to disaggregate the data online. Kim et al. [11]
investigate the effectiveness of several unsuper-
vised disaggregation methods on low frequency
power measurements collected in real homes.
They also propose a usage pattern which consists
of on-duration distribution of all appliances.
Goncalves et al. [7] explore an unsupervised
approach to determine the number of appliances
in the household, including their power con-
sumption and state, at any given moment. Chen
et al. [3] disaggregate utility consumption from
smart meters into specific usage associated with
certain human activities. They propose a novel
statistical framework for disaggregation on
coarse granular smart meter readings by model-
ing fixture characteristic, household behavior,
and activity correlations.

Ito et al. [8] extract features from the cur-
rent (e.g., amplitude, form, timing) to develop
appliance signatures. For appliance recognition,
Kato et al. [10] use Principal Component Analy-
sis to extract features from electric signals and
classify them using Support Vector Machine.
Aritoni et al. [2] develop a software prototype to
understand the behaviors of household appli-
ances. Chen et al. [4, 6] introduce two types of
usage patterns to describe users’ representative
behaviors. Lin et al. [13] apply power meters for
appliance recognition on the electric panel. Jak-
kula et al. [9] propose an Apriori-based algo-
rithm for activity prediction and anomaly detec-
tion from sensor data in a smart home. All
aforementioned studies focus on knowledge ex-
traction for a single appliance and ignore the
concept of incremental maintenance of mining
results in a smart home.

Incrementally
maintain pattern

Cloud
Database

Correlation
Patterns

P2:
P3: …

P1:

Progressively
Generating!!

Visualize
Pattern

Home

AlarmAlarmDCMS APP

on off
ID 3

on off
ID 2

on off
ID 2

on off
ID4

D‐Link controler

Light on off
ID 3

on off
ID 2

on off
ID 2

on off
ID4

D‐Link controler

Light on off
ID 3

on off
ID 2

on off
ID 2

on off
ID4

D‐Link controler

Light on off
ID 3

on off
ID 3

on off
ID 2

on off
ID 2

on off
ID 2

on off
ID4

D‐Link controler

Light

Usage Patterns

Air Conditioner

light

(1) Log sensor data

(3)(2) Incrementally
maintain pattern

Cloud
Database

Correlation
Patterns

P2:
P3: …

P1:

P2:
P3: …

P1:

Progressively
Generating!!

Visualize
Pattern

Home

AlarmAlarmDCMS APPAlarmAlarmDCMS APP

on off
ID 3

on off
ID 2

on off
ID 2

on off
ID4

D‐Link controler

Light on off
ID 3

on off
ID 2

on off
ID 2

on off
ID4

D‐Link controler

Light on off
ID 3

on off
ID 2

on off
ID 2

on off
ID4

D‐Link controler

Light on off
ID 3

on off
ID 3

on off
ID 2

on off
ID 2

on off
ID 2

on off
ID4

D‐Link controler

Light on off
ID 3

on off
ID 2

on off
ID 2

on off
ID4

D‐Link controler

Light on off
ID 3

on off
ID 2

on off
ID 2

on off
ID4

D‐Link controler

Light on off
ID 3

on off
ID 3

on off
ID 2

on off
ID 2

on off
ID 2

on off
ID4

D‐Link controler

Light on off
ID 3

on off
ID 2

on off
ID 2

on off
ID4

D‐Link controler

Light on off
ID 3

on off
ID 3

on off
ID 2

on off
ID 2

on off
ID 2

on off
ID4

D‐Link controler

Light on off
ID 3

on off
ID 3

on off
ID 2

on off
ID 2

on off
ID 2

on off
ID4

D‐Link controler

Light on off
ID 3

on off
ID 3

on off
ID 2

on off
ID 2

on off
ID 2

on off
ID4

D‐Link controler

Light

Usage Patterns

Air Conditioner

light

Usage Patterns

Air Conditioner

light

(1) Log sensor data

(3)(2)

Fig. 2: System framework of DCMS

3. System Architecture & Preliminary

We develop an intelligent system, called
Dynamic Correlation Mining System (abbrevi-

ated as DCMS), not only to capture the correla-
tion patterns among appliances but also to main-
tain the discovered pattern when usage data are
progressively generated in the smart home. The
framework of DCMS is shown in Fig. 2.

We first attach a smart meter to each appli-
ance in smart home environment. The smart me-
ter will transmit the usage data of the appliance
to a cloud server. Since the data are generated
progressively, an efficient algorithm, named In-
cremental Correlation Pattern Miner (ICPMiner),
is proposed to incrementally mine and maintain
the correlation patterns among appliances. Fi-
nally, we develop an APP to visualize the dis-
covered correlation patterns for residents. Before
introducing the ICPMiner, we give some defini-
tion first.

Definition 1 (usage sequence and database)
Let E = {e1, e2,…, ek} be the set of appliances.
We say the triplet (ei, si, fi)  E  N  N is a us-
age interval, where ei  E, si, fi  N and si  fi.
The si and fi are called the starting time and the
finishing time, respectively. An usage sequence q
is a series of usage intervals (e1, s1, f1), …, (en,
sn, fn). The time information of q is the starting
time of first interval and the finishing time of
last interval in q, i.e., s1 and fn. A database DB =
{r1, r2, …, rm} is called a usage database where
each record ri is a pair of sequence-id (SID) and
usage sequence, i.e., ri = SIDi, qi.

Definition 2 (dynamic representation) Given a
usage sequence q = (e1, s1, f1), …, (ei, si, fi), …,
(en, sn, fn), Tq = { s1, f1, …, si, fi, …, sn, fn } is a
set of all endpoints in q. After sorting T in
non-decreasing order, an endpoint sequence qe =
t1, t2, …, t2n can be derived by representing si
and fi as ei

＋ and ei
－, respectively. We use the

parenthesis to form an endpointset to indicate the
times of endpoints are the same. The corre-
sponding endpoint sequences of 13 Allen’s tem-
poral relations are shown in Table 1. The dy-
namic representation of q includes the corre-
sponding endpoint sequence qe and time infor-
mation [s1, fn] of q. For example, given a usage
sequence (A, 1, 3), (B, 5, 9), its time set is {1, 3,
5, 9}; hence, the corresponding endpoint se-
quence is A＋A－B＋B－. The dynamic representa-
tion of q is A＋A－B＋B－ [1, 9]. Without loss of
generality, for the rest of this paper, we suppose
all the sequences in a usage database have been
transformed into dynamic representation.

Definition 3 (correlation pattern and frequent
pattern tree) Given a usage database DB, a re-
cord SID, qe, [s, f] is said to contain an end-
point sequence , if  is a subsequence of qe

(represented as  ⊑ qe). The support of  in DB

is the number of records containing , i.e., sup-

port () = |{ SID, qe, [s, f] DB) |  ⊑ qe}|.
Given a positive integer min_sup as the support
threshold, the set of correlation patterns includes
all frequent endpoint sequences whose supports
are no less than min_sup. A frequent pattern tree
(FPT) T is a tree that represents the set of corre-
lation patterns in database. A node d in T stores
an endpoint corresponding to a correlation pat-
tern that starts from the root node to d. Each
node also preserves two information, say sup-
port_value and sequence_list. The sup-
port_value represents the support count of the
correlation pattern. The sequence_list stores a
list of SIDs to represent the sequences containing
this correlation pattern.

Actually, two types of incremental updates
for usage database are used: 1) inserting new
usage sequences into database, denoted as IN-
SERT; 2) appending new usage intervals to ex-
isting usage sequences, denoted as APPEND. An
application may include all types of updates.
When the database is updated with a combina-
tion of INSERT and APPEND, we can regard the
INSERT as a special case of APPEND, for in-
serting a new sequence is equivalent to append-
ing a new sequence to an empty sequence, as
shown in Fig. 3.

..




INSERT

APPEND

increment
database

(db)

original
database

(DB)

updated
database

(DB’)

extended
database
(EDB)

..




INSERT

APPEND

increment
database

(db)

original
database

(DB)

updated
database

(DB’)

extended
database
(EDB)

Fig. 3: Concept of incremental update in usage database.

With three usage sequences q, q’ and q’’, q’’

= q ◇ q’ means q’ is the concatenation of q. q’ is
called the appended sequence of q. q’’ is an
updated sequence of q appended with q’. To
facilitate the presentation of this paper, we de-
fine increment and update databases. Given a
temporal database, DB, truncated and appended
with a few event sequences after a period, DB is
called original database.

Definition 4 (increment and updated database)
The increment database db is referred to as the
set of newly appended sequences. The SIDs of
the appended sequences in db may already exist
in DB. A database DB combining all the event

sequences in db is referred to as the updated da-
tabase DB’, as shown in Fig. 3.

4. ICPMiner Algorithm

When a usage database DB is updated to
DB’, there are three possible cases for the corre-
lation patterns in DB’:
 Case1: A pattern is frequent in DB’, and also

frequent in DB.
 Case2: A pattern is frequent in DB’, and in-

frequent in DB but has a frequent pattern in
DB as a prefix.

 Case3: A pattern is frequent in DB’, and in-
frequent in DB and has no any frequent pat-
terns in DB as a prefix.

Case1 is easy to handle since we have al-
ready stored the information of previous mining
results into FPTDB. We can obtain the correlation
patterns in Case1 by checking and adjusting the
support of every pattern in FPTDB in DB’. In
Case2, although we have not preserved any in-
formation of infrequent sequences in DB, all
correlation patterns have at least one prefix sub-
sequence which is frequent in DB, i.e., the fre-
quent prefix is stored in FPTDB. Hence, we can
utilize the correlation patterns in FPTDB as prefix
to recursively discover the correlation patterns in
Case 2. Since, in Case 3, the correlation patterns
have no information stored in previous mining
results, FPTDB, we need to scan DB’ for all new
frequent endpoints, and then use each new fre-
quent endpoint as prefix to construct projected
database and recursively mine all correlation
patterns in Case 3.

In order to calculate the support of all pat-
terns which are infrequent in DB but frequent in
DB’, the naïve method may keep the information
of all possible candidate set, i.e., mining EDB
with min_sup = 1. This awkward approach may
consume large memory and many non-promising
database projection. To remedy this problem, we
propose an algorithm, ICPMiner, with two opti-
mization techniques to reduce unnecessary space
searches.

Definition 5 (search reduction) Given a tem-
poral pattern  in DB (node  in FPTDB), when
DB is updated to DB’, incre_sid is defined as a
set of all SIDs in increment database db and in-
cre_endpoint| is defined as a set of all event
slices in db|. We have two search space reduc-
tions,
i) sequence-reduction: If {’ s sequence list}

∩incre_sid = , then DB| is identical to
DB’|. The support of  and all temporal
patterns prefixed with , i.e., node  and all
child nodes of  in FPTDB, are unchanged in
DB’. Hence there is no temporal pattern

which is infrequent in DB but becomes fre-
quent in DB’ with  as prefix. We can stop
searching  and all ’s child nodes in
FPTDB.

ii) endpoint-reduction: If ’ s parent node in in
FPTDB does not insert any node as child
node when DB is updated to DB’, and the
set of { and all ’ s sibling nodes}∩incre_
endpoint| = , then the support of  and all
temporal patterns prefixed with , i.e., node
 and all child nodes of  in FPTDB, are
unchanged in DB’. Hence there is no tem-
poral pattern which is infrequent in DB but
becomes frequent in DB’ with  as prefix.
We can stop searching  and all child nodes
of  in FPTDB

The search space reduction in Definition 5

plays an important role in ICPMiner. When the
minimum support goes lower and the maintained
patterns turn to be longer, many unnecessary
searches can be avoided effectively. As observed
in our experiments, the search space reduction
can skip more than 60% nodes in FPTDB, espe-
cially when minimum support is extremely low.
This is also the main reason why ICPMiner not
only outperforms other algorithms in runtime
performance, but also consumes less memory
space. The pseudo code is shown in Algorithm 1.

Algorithm 1: ICPMiner (DB’, min_sup, FPTDB)

Input: DB’: updated temporal database, min_sup: the
minimum support, FPTDB: frequent pattern tree
of original DB

Output: FPTDB’ : frequent pattern tree of updated data-
base DB’

// initial Phase
01: FPTDB’ ← ; determine EDB;
02: transform DB’ into dynamic presentation and find all

frequent endpoints concurrently;
03: NFS ← new frequent endpoints in DB’ ; // frequent

endpoints in DB’  FPTDB

// mining phase
04: for each endpoint b in NFS do
05: insert b into FPTDB’ ;
06: call CPrefixSpan (DB’|b , b , min_sup, FPTDB’);

// extending phase
07: scan DB’ for update the support of node in FPTDB ;
08: for each node  in FPTDB do
09: FPTDB ← CPrefixSpan (DB’, , min_sup,

FPTDB);
10: for each node  in FPTDB  min_supdo
11: insert  into FPTDB’ ;
12: if search_reduction (, DB’|) = “false”
13: call CPrefixSpan (DB’| ,  , min_sup, FPTDB’);
14: Output FPTDB’ ;

There are three phases in ICPMiner, initial

phase, mining phase and extending phase. Initial
phase first uses the interval extension to trans-
form all sequences into dynamic representation

(line 2, algorithm 1), and scans db once to dis-
cover all new frequent endpoints in DB’. Notice
that, if we store previous infrequent endpoints in
DB, we can find the complete set of new fre-
quent endpoints in DB’ by just scan EDB with-
out rescanning DB again (line 3, algorithm 1).
Then, in mining phase, we use each new fre-
quent slice as prefix to construct projected data-
base and call CPrefixSpan to discover the tem-
poral patterns (lines 4-6, algorithm 1).

CPrefixSpan extends the concept of pro-
jected database from [16] and employs two op-
timization strategies to reduce the search space.
Since the starting endpoints and finishing end-
points definitely occur in pairs in a sequence, we
only project the frequent finishing endpoints
which have the corresponding starting endpoints
in their prefixes (lines 3-5, procedure 1). We can
prune off non-qualified patterns before con-
structing projected database.

Procedure 1: CPrefixSpan (DB| ,  , min_sup, FPTDB)

Input: DB|: projected database, : a temporal pattern,
min_sup: the minimum support, FPTDB: frequent
pattern tree of original DB

01: scan DB| once and find all frequent endpoints c;
02: for each frequent endpoint c do
03: if c is a “finishing endpoint” then
04: if exist corresponding starting endpoint in 

then
05: append c to  to form  ;
06: if c is a “starting endpoint” then
07: append c to  to form  ;
08: for each  do
09: construct projected database DB| with significant

postfix;
10: if |DB| |  min_sup then
11: insert  into FPTDB ;
12: if search_reduction (, DB’|) = “false”
13: call CPrefixSpan (DB| , , min_sup, FPTDB);

Moreover, when constructing a projected

database, some endpoints in postfixes need not
be considered. With respect to a prefix p, a
finishing endpoint in a projected postfix is called
significant, if it has corresponding starting end-
point in p. We construct the projected database
DB|p by collecting significant endpoints only
(line 9, procedure 1). All insignificant endpoints
are eliminated since they can be ignored in the
discovery of temporal patterns. Note that the
search_reduction technique in Definition 5 can
be used in CPrefixSpan when we call it recur-
sively. We utilize search_ reduction to check
whether growing can stop (line 12, procedure 1).
If not, we recursively call CPrefixSpan to dis-
cover the temporal patterns.

Finally, in extending phase, ICPMiner up-
dates the support of every frequent pattern in DB.
If a pattern is still frequent in DB’, we also use
search_reduction to check if we can stop grow-
ing. If not, CPrefixSpan is called to discover the

temporal patterns (lines 12-13, algorithm 1).

5. Experimental Results

To evaluate the performance of ICPMiner,
we implement CTMiner [5], TPrefixSpan [18],
IEMiner [15] for comparison. All algorithms
were implemented in C++ language and tested
on a computer with Pentium D 3.0 GHz with 2
GB of main memory. The performance study has
been conducted on both synthetic and real world
datasets. First, we compare the execution time
and memory usage using synthetic datasets at
extreme low minimum support. Then, we use a
real dataset [12] to show the performance and
the practicability of incremental mining for cor-
relation patterns.

The synthetic datasets are generated using
synthetic generation program [18]. Since the
original data generation program was designed
to generate static database, the generator requires
modifications on incremental scenario accord-
ingly. The parameter setting of temporal data
generator is shown in Table 2. We partition the
updated database DB’ into the original database
DB and increment database db, as the example in
Fig. 1. Different settings of three parameters are
used to reflect different updating scenarios.

Table 2: Parameters of synthetic data generator.

Ratio of the number of intervals of an existed sequence
appearing in original database DB to increment database db

Rapp

Ratio of the number of existed sequences extended to new
sequences inserted in increment database db

Rext

Ratio of the number of sequences in increment database db
to updated database DB’

Rinc

Number of event symbolsN

Number of potentially frequent sequencesNS

Average size of potentially frequent sequences| S |

Average size of event sequences| C |

Number of event sequences| D |

descriptionparameters

Ratio of the number of intervals of an existed sequence
appearing in original database DB to increment database db

Rapp

Ratio of the number of existed sequences extended to new
sequences inserted in increment database db

Rext

Ratio of the number of sequences in increment database db
to updated database DB’

Rinc

Number of event symbolsN

Number of potentially frequent sequencesNS

Average size of potentially frequent sequences| S |

Average size of event sequences| C |

Number of event sequences| D |

descriptionparameters

5.1 Execution time and memory usage

In all the following experiments, two pa-
rameters are fixed, i.e., the average size of po-
tentially frequent sequences, | S | = 4, and the
number of potentially frequent sequences, NS =
5,000. We set Rinc = 10%, Rext = 50% and Rapp =
20% to model common database updating sce-
nario.

The first experiment for comparison of four
algorithms is on the dataset D10k–C10–N1k
with the minimum support thresholds varying
from 0.01 % to 0.005 %. Obviously, re-mining
from scratch with non-incremental algorithm is
less efficient than using incremental maintaining
algorithm, as illustrated in Fig. 4(a). When we
continue to lower the minimum threshold, the

(b) The memory usage of algorithms

minimum support (%)

m
em

ory usage (M
B

)

D10k – C10 – N1k

0

50

100

150

200

250

300

0.01 0.009 0.008 0.007 0.006 0.005

(a) The execution time of algorithms

minimum support (%)

execution tim
e (secs)

D10k – C10 – N1k

ICPMiner
CTMiner
IEMiner

TprefixSpan

0

20

40

60

80

100

120

0.01 0.009 0.008 0.007 0.006 0.005

TprefixSpan ICPMiner
CTMinerIEMiner

(b) The memory usage of algorithms

minimum support (%)

m
em

ory usage (M
B

)

D10k – C10 – N1k

0

50

100

150

200

250

300

0.01 0.009 0.008 0.007 0.006 0.005

(a) The execution time of algorithms

minimum support (%)

execution tim
e (secs)

D10k – C10 – N1k

ICPMiner
CTMiner
IEMiner

TprefixSpan

0

20

40

60

80

100

120

0.01 0.009 0.008 0.007 0.006 0.005

TprefixSpanTprefixSpan ICPMinerICPMiner
CTMinerCTMinerIEMinerIEMiner

0

100

200

300

400

500

600

700

800

0.01 0.009 0.008 0.007 0.006 0.005

(d) The memory usage of algorithms
minimum support (%)

execution tim
e (secs)

D100k – C20 – N10k

(c) The execution time of algorithms

0

5000

10000

15000

20000

25000

0.01 0.009 0.008 0.007 0.006 0.005

minimum support (%)

m
em

ory usage (M
B

)

D100k – C20 – N10k

ICPMiner
CTMiner
IEMiner

TprefixSpan TprefixSpan ICPMiner
CTMinerIEMiner

0

100

200

300

400

500

600

700

800

0.01 0.009 0.008 0.007 0.006 0.005

(d) The memory usage of algorithms
minimum support (%)

execution tim
e (secs)

D100k – C20 – N10k

(c) The execution time of algorithms

0

5000

10000

15000

20000

25000

0.01 0.009 0.008 0.007 0.006 0.005

minimum support (%)

m
em

ory usage (M
B

)

D100k – C20 – N10k

ICPMiner
CTMiner
IEMiner

TprefixSpan

ICPMiner
CTMiner
IEMiner

TprefixSpan TprefixSpan ICPMiner
CTMinerIEMiner

TprefixSpanTprefixSpan ICPMiner
CTMinerCTMinerIEMinerIEMiner

Fig. 4: Performance and memory usage on synthetic datasets.

runtime of ICPMiner outperforms the other al-
gorithms. The memory usages of algorithms are
showed as in Fig. 4(b). We can see that ICP-
Miner consumes less memory than the other
algorithms. The second experiment is performed
on data set D100k–C20–N10k, which contains
100,000 usage sequences, average length 40 and
10,000 usage intervals with common database
updating scenario. The execution time of differ-
ent algorithms is shown in Fig. 4(c). We can see
that when the support is 0.005%, ICPMiner is
significantly faster than other methods. Fig. 4(d)
shows the memory usages of four algorithms
with different minimum support thresholds. Ob-
viously, ICPMiner consumes less memory than
the other algorithms.

2

3

1

Part of discovered correlation patternshouse

2

3

1

Part of discovered correlation patternshouse

outlet 1

furnace

heater

light 3light 1

light 2

light 3

light 2light 1

outlet 1

Fig. 5: Part of correlation patterns from REDD dataset

5.2 Real World Dataset Analysis

In addition to using synthetic datasets, we
also have performed an experiment on
real-world dataset to indicate the applicability of
correlation pattern mining. The dataset REDD
[12] used in the experiment is the power reading
of appliances collected from six different houses.
Each house has about 15 appliances. We convert
the raw data into the usage interval with turn-on
time and turn-off time. Fig. 5 shows the part of
mining result applying ICPMiner on REDD
dataset with min_sup = 0.3.

6. Conclusion

Recently, considerable concern has arisen
over the electricity conservation due to the issue
of greenhouse gas emissions. In this paper, we
propose an intelligent system, DCMS, which not
only could capture the usage correlation among
appliances in a house, but also dynamically
maintain the mining results with progressive
data generation. The experimental studies indi-
cate that DCMS is efficient and scalable. Fur-
thermore, DCMS is applied on a real-world data-
set to show the practicability of correlation pat-
tern mining.

Reference

[1] J. Allen. Maintaining Knowledge about Temporal
Intervals. Communications of ACM, vol.26, issue
11, pp.832-843, 1983.

[2] O. Aritoni and V. Negru. A Methodology for
Household Appliances Behavior Recognition in
AmI Systems Integration. 7th International Con-
ference on Automatic and Autonomous Systems
(ICAS'11), pp. 175-178, 2011.

[3] F. Chen, J. Dai, B. Wang, S. Sahu, M. Naphade
and C. Lu. Activity Analysis Based on Low
Sample Rate Smart Meters. 17th ACM SIGKDD
International Conference on Knowledge Discov-
ery and Data Mining (KDD'11), pp. 240-248,
2011.

[4] Y. Chen, C. Chen, W. Peng, W Lee. Mining Cor-
relation Patterns among Appliances in Smart
Home Environment. 18th Pacific-Asia Confer-
ence in Knowledge Discovery and Data Mining,
Advances in Knowledge Discovery and Data
Mining (PAKDD’14), pp. 222-233, 2014.

[5] Y. Chen, J. Jiang, W. Peng and S. Lee. An Effi-
cient Algorithm for Mining Time Interval-based
Patterns in Large Databases. 19th ACM Interna-
tional Conference on Information and Knowl-
edge Management (CIKM'10), pp. 49-58, 2010.

[6] Y. Chen, Y. Ko, W. Peng and W. Lee. Mining
Appliance Usage Patterns in a Smart Home En-
vironment. 17th Pacific-Asia Conference in
Knowledge Discovery and Data Mining, Ad-
vances in Knowledge Discovery and Data Min-
ing (PAKDD’13), pp. 99-110, 2013.

[7] H. Goncalves, A. Ocneanu and M. Berges. Un-
supervised Disaggregation of Appliances using
Aggregated Consumption Data. KDD workshop
on Data Mining Applications in Sustainability
(SustKDD'11), 2011.

[8] M. Ito, R. Uda, S. Ichimura, K. Tago, T. Hoshi
and Y. Matsushita. A Method of Appliance De-
tection Based on Features of Power Waveform.
Proceedings of 4th IEEE Symposium on Applica-
tions and the Internet (SAINT'04), pp. 291-294,
2004.

[9] V. Jakkula and D. Cook. Using Temporal Rela-
tions in Smart Environment Data for Activity

Prediction. Proceedings of the 24th International
Conference on Machine Learning (ICML'07), pp.
1-4, 2007.

[10] T. Kato, H. Cho, D. Lee, T. Toyomura and T.
Yamazaki. Appliance Recognition from Electric
Current Signals for Information-energy Inte-
grated Network in Home Environments. Ambient
Assistive Health and Wellness Management in the
Heart of the City, vol. 5597, pp. 150-157, 2009.

[11] H. Kim, M. Marwah, M. Arlitt, G. Lyon and J.
Han. Unsupervised Disaggregation of Low Fre-
quency Power Measurements. Proceedings of
11th SIAM International Conference on Data
Mining (SDM'11), pp. 747-758, 2011.

[12] J. Kolter, M. Johnson. REDD: A Public Data
Set for Energy Disaggregation Research. KDD
workshop on Data Mining Applications in Sus-
tainability (SustKDD'11), 2011.

[13] G. Lin, S. Lee, J. Hsu and W. Jih. Applying
Power Meters for Appliance Recognition on the
Electric Panel. Proceedings of 5th IEEE Confer-
ence on Industrial Electronics and Applications
(ISIEA'10), pp. 2254-2259, 2010.

[14] H. Matthews, L. Soibelman, M. Berges and E.
Goldman. Automatically Disaggregating the To-
tal Electrical Load in Residential buildings: a
profile of the required solution. Intelligent Com-
puting in Engineering, pp. 381-389, 2008.

[15] D. Patel, W. Hsu and M. Lee. Mining Rela-
tionships Among Interval-based Events for Clas-
sification. Proceedings of the 2008 ACM SIG-
MOD International Conference on Management
of Data, pp. 393-404, 2008.

[16] J. Pei, J. Han, B. Mortazavi-Asl, H. Pito, Q.
Chen, U. Dayal and M. Hsu. PrefixSpan: Mining
Sequential Patterns Efficiently by Pre-
fix-Projected Pattern Growth. Proceedings of
17th International Conference on Data Engi-
neering (ICDE’01), pp. 215-224, 2001.

[17] K. Suzuki, S. Inagaki, T. Suzuki, H. Nakamura
and K. Ito. Nonintrusive Appliance Load Moni-
toring Based on Integer Programming. Interna-
tional Conference on Instrumentation, Control
and Information Technology (ICIT’08), pp.
2742-2747, 2008.

[18] S. Wu and Y. Chen. Mining Nonambiguous
Temporal Patterns for Interval-Based Events.
IEEE Transactions on Knowledge and Data En-
gineering, vol.19, issue 6, pp. 742-758, 2007.

